Despite the proliferation of algorithms, human hesitation towards algorithmic decision-making systems exists. A substantial body of literature has shown the tendency for people to be averse to using (empirically superior) algorithmic recommendations to improve their decisions. From hesitance to get into an elevator without an operator, to the fear of riding in a fully self-driving vehicle, human resistance to relinquishing decision-making to automated decision systems extends across various research domains and practical applications. Despite the evidence that algorithmic-based predictions yield higher success rates than intuitive human estimations, people often choose to rely on their own or someone else’s judgment, even when it comes at the expense of their performance. 

Despite the significant technological progress in sustainable transportation, computer vision and urban network infrastructures, many key issues are yet to be answered about how these autonomous vehicles will be integrated on the roadways, how willingly people will adopt them as a part of their daily lives and what new types of human-centered design interaction will emerge as part of the built environment. Because autonomous driving has the potential to profoundly alter the way we move around and radically transform society in ways we yet can’t truly imagine, using it as a speculation basis can offer an insight into the creative processes today.

Is intelligence a prerequisite for experience, or only for expression of that experience? What if the occurrence of higher-order, self-reflexive states are not necessary and sufficient for consciousness? Although humans tend to believe that we perceive the true reality, the fact is that subjective image generated in our brains are far from being a truthful representation of real world. Nevertheless, generally our conscious experience of the world proves to be highly reliable and consistent in terms of mundane tasks.

he need to express ourselves and communicate with others is fundamental to what it means to be human. Animal communication is typically non-syntactic, with signals which refer to whole situations. On the contrary, human language is syntactic, and signals consist of discrete components that have their own meaning. Human communication is enriched by the concomitant redundancy introduced by multimodal interaction. The vast expressive power of human language would be impossible without syntax, and the transition from non-syntactic to syntactic communication was an essential step in the evolution of human language. Syntax defines evolution.

The remarkable intricacy of human general intelligence has so far left psychologists being unable to agree on its common definition. The framework definition of general human intelligence, suitable for a discussion herein and as proposed by an artificial intelligence researcher David L. Poole, is that intelligence is wherein “an intelligent agent does what is appropriate for its circumstances and its goal, it is flexible to changing environments and changing goals, it learns from experience, and it makes appropriate choices given perceptual limitations and finite computation”. Learning from past experiences and adapting behavior accordingly have been vital for an organism in order to prevent its distinction or endangerment in a dynamic competing environment. The more phenotypically intelligent an organism is the faster it can learn to apply behavioral changes in order to survive and the more prone it is to produce more surviving offspring. This applies to humans as it does to all intelligent agents, or species.

The human brain is remarkable in its complexity design. A myriad of constantly evolving, reciprocally sophisticated computational systems, engineered by natural selection to use information to adaptively regulate physiology, behavior and cognition. Our brain defines our humanity. Systematically, through multitudinous generations, both the human brain structure (hardware) and its neural algorithms (software) have been fine-tuned by evolution to enable us adapt better to environment.

Complexity is natively intervened within data: if an operation is decomposable into rudimentary steps whose number varies depending on data complexity, exploiting a data sequence as a whole (collective effort of colony members in the specific task), rather than a single data input, can conduce to a much faster result. By forming a closed-loop system among large populations of independent agents, the ‘Swarm’, high-level intelligence can emerge that essentially exceeds the capacity of the individual participants. The intelligence of the universe is social.

There are innumerable examples of other ways in which information technology has caused changes in the existing legislative structures. The law is naturally elastic, and can be expanded or amended to adapt to the new circumstances created by technological advancement. The continued development of artificial intelligence, however, may challenge the expansive character of the law because it presents an entirely novel situation. To begin with, artificial intelligence raises philosophical questions concerning the nature of the minds of human beings. These philosophical questions are connected to legal and ethical issues of creating machines that are programmed to possess the qualities that are innate and unique to human beings. If machines can be built to behave like humans, then they must be accorded some form of legal personality, similar to that which humans have. At the very least, the law must make provision for the changes that advanced artificial intelligence will cause in the society through the introduction of a new species capable of rational, logical thought. By deriving general guidelines based on the case law of the past, it should aid the lawmakers to close the gap on technological singularity.

The unmitigated accuracy in inputting and outputting data through different medium interfaces (as well as our own technological fluency in using and utilizing information resources in itself) signals the multiplicity of subjectivities we easily form, participate in and are subjected to in our everyday lives. Humanity is on the path to significantly accelerate the evolution of intelligent life beyond its current human form and human limitations.

Embodied cognition is a research theory that is generally all about the vast difference of having an active body and being situated in a structured environment adept to the kind of tasks that the brain has to perform in order to support adaptive task success. Herein the team if referred as the existence of a memory system that encodes data of agent’s motory and sensory competencies, stressing the importance of action for cognition, in such way that an agent is capable to tangibly interact with the physical world. The aspects of the agent's body beyond its brain play a significant causative and physically integral role in its cognitive processing. The only way to understand the mind, how it works,  and subsequently train it is to consider the body and what helps the body and mind to function as one.

The free and equal exchange of packets of information is at the very heart of the internet. It is this free exchange which made the modern internet possible, and with it the many business, educational, and informational changes it has brought around the globe. For decades, no one questioned or challenged this core concept. The information was there for the taking, and millions of Internet uses reaped the benefits of growing high-speed internet and the many new resources it made available. Ironically, the very thing that made the Internet successful and widespread also gave birth to the very thing that would threaten the Internet’s future: the growth of high-speed Internet during the first decade of this century.

The fuzziness of software patents’ boundaries has already turned the ICT industry into one colossal turf war. The expanding reach of IP has introduced more and more possibilities for opportunistic litigation (suing to make a buck). In the US, two-thirds of all patent law suits are currently over software, with 2015 seeing more patent lawsuits filed than any other year before. Of the high-tech cases, more than 88% involved non-practicing entities (NPEs). These include two charmlessly evolving species who’s entire business model is lawsuits—patent trolls and sample trolls. These are corporations that don’t actually create anything, they simply acquire a library of intellectual property rights and then litigate to earn profits (and because legal expenses are millions of dollars, their targets usually highly motivated to settle out of court). And the patent trolls are most common back in the troubled realm of software. The estimated wealth loss in the US alone is $500,000,000,000 (that’s a lot of zeros).

The future of artificial intelligence is not so much about direct interaction between humans and machines, but rather indirect amalgamation with the technology that is all around us, as part of our everyday environment. Rather than having machines with all-purpose intelligence, humans will interact indirectly with machines having highly developed abilities in specific roles. Their sum will be a machine ecosystem that adapts to and aids in whatever humans are trying to do. In that future, the devices might feel more like parts of an overall environment we interact with, rather than separate units we use individually. This is what ambient intelligence is. 

The concept of organ printing based on the techniques of directed deposition and sequential biological tissue self-assembly opens the possibility of being able to organize cells and molecules in three dimension with the desired local density, functionality and anatomical structure mimicking their distribution in organs. 3D bioprinting (and ethical debate on its use) gain more and more traction in medical conferences and journals—what the specific applications are involved and how the technology development might affect the average citizen. But what if the ability to 3D print organs and other soft tissues also brings wonderful opportunities for the organs and tissues to be "enhanced" with non-human genetic material?

All humans (I hope) dream of expanding to other planets (at some point). Maybe not a myriad of us share the exact vision of wanting to send a million people to Mars and start a colony, but sometimes a faction of dreamers is all it takes.

By 2030 the world’s 750 largest cities will account for 61 percent of global GDP. Supporting and establishing those future cities as smart cities (with sophisticated sensors, buildings, and appliances everywhere to ensure the management of city infrastructures and the delivery of services to its citizens) will be very different in many ways and thus is already becoming a major priority. Its fundamental solution, the Internet of Things, will create a digital layer of infrastructure that will help citizens access and consume any information they need, no matter where they are.

While patent laws protect design concepts in the traditional manufacturing model, additive manufacturing is not so clear-cut. The legal question becomes, "Who really owns the design of a part that is printed?".  And regarding counterfeiting of parts, the technology of additive manufacturing makes reverse engineering an unnecessary step, thereby easing the way for counterfeiters to do their work quickly and more efficiently.  Add to that the very real concern about the structural integrity of objects produced by additive manufacturing methods, and you can see that counterfeit parts produced in this way may result in catastrophic failure, and, depending on the use of the object, even potentially loss of life.